#### Recent B Physics Results from CDF

Robert Harr
Wayne State University

## Recent B Physics Results from CDF

#### Using up to 220 pb<sup>-1</sup> of data

- Masses and lifetimes
  - A prelude to CP measurements
- Rare decays
- Observation of the state X(3872)
- Hadronic B decay final states are collected with the displaced track trigger
  - $-B_{\rm s}$  mixing channel
  - Access to CP angles □ and □

#### B Hadron Masses



© Competitive measurements for  $B_d$  and  $B^+$ :

 $M(B_d) = 5280.30 \pm 0.92 \pm 0.96 \text{ MeV}$  and  $M(B^+) = 5279.32 \pm 0.68 \pm 0.94 \text{ MeV}$ 

**@** World's best measurements for  $B_s$  and  $\square_B$ :

 $M(B_s) = 5365.50 \pm 1.29 \pm 0.94 \text{ MeV}$  and  $M(\square_B) = 5620.4 \pm 1.6 \pm 1.2 \text{ MeV}$ 

#### B Hadron Lifetimes





• Check  $B_d$  and  $B^+$  lifetimes against BaBar/Belle measurements.

$$[(B_s) = 1.33 \pm 0.14 \pm 0.02 \text{ ps and } [(B_B) = 1.25 \pm 0.26 \pm 0.10 \text{ ps}]$$

- Competitive with LEP results. Will improve with statistics.
- See talk by Daria Zieminska.

#### Rare Decays





- **Q** New limit for B.R. of  $B_s \square \square^{+\square^{-1}}$ 
  - < 9.5 x 10<sup>-7</sup> @ 90% CL
  - < 1.2 x 10<sup>-6</sup> @ 95% CL
- Limit on B.R. of B<sub>d</sub> □ □+□ about a factor of 2 worse than BaBar and Belle.
- New limit for B.R. of
   D<sup>0</sup> □ □+□-:
  - < 2.5 X 10<sup>-6</sup> @ 90% CL
- See talk by Cheng-Ju Lin.

## Hunting For New States



• Ssssshhhh.....

## Hunting For New States



• Ssssshhhh......Wabbit hunting.

## X(3872)

- New state observed by Belle in  $B \square XK \square J/\square \square^+\square^-K$  final state of narrow width.
- ◆ Tevatron: this state produced directly, or via B decays.
- CDF observes this state at the same mass.
- ◆ Belle reports that M(□□) distribution suggests a □ resonance.
- ◆ CDF sees a preference for M(□□) > 500MeV □ needs to be finalized!





## X(3872) Signal Significance



- © Note relatively large cross section (times branching fraction) compared to the  $\square(2s)$ .

#### What is X(3872)?

- Two leading candidates:
  - 1. A ccbar state  $\square$  like the 1  ${}^{3}D_{2}$  state
  - 2. D\*D molecule (suggested by Belle)
    - Observed mass is a few MeV below threshold
    - $\bullet$  X  $\square$   $\square$ c is not yet observed by Belle
    - $\bullet$  X  $\square$  J/ $\square$   $\square$  forbidden for  ${}^3D_2$  state
- Q Additional measurements to pin down the quantum numbers:
  - Helicity angles
  - $\bullet$   $M_{\square\square}$  distribution (resonance structure)

## B□ h+h'- Decays

- $@B_d \square \square \square$  and  $B_s \square KK$  modes are sensitive to CP angle  $\square$
- $\bigcirc B_{(d,s)} \square K \square$  and above modes are separated statistically by kinematics and particle ID.
- ②  $\mathfrak{B}(B_{d} \square \square)/\mathfrak{B}(B_{d} \square K\square) = 0.26 \pm 0.11 \pm 0.055.$
- **@** First observation of  $B_s \square K^+K^-$







- MC templates used to fit mass spectrum.
- $\bigcirc B \sqcap DK$  is another mode of interest for CP analysis.

# $B_{\mathrm{S}} \square D_{\mathrm{S}}^{-} \square^{+}$





- $\bigcirc B_{\rm s} \square D_{\rm s}$  is a potential mode for measuring  $x_{\rm s}$ .
- © Fully reconstructed mode for minimal uncertainty in the boost of the  $B_s$ .

#### Summary

- Progress with CDF Run2 analyses:
  - **♦** Traditional: masses, lifetimes, rare decays.
  - $\bullet$  CDF has observed the X(3872).
  - New topics enabled by the displaced track trigger are being explored: hadronic CP modes, and hadronic modes for B<sub>s</sub> mixing.
- New charm and bottom production cross sectionsChunhui Chen.
- © Tagging studies [ Ting Miao.